
Building with waf

BV

[2014-03-01 Sat 09:56]

The venerable workhorse of building software has long been make driven

by its quirky and sometimes cryptic Makefile con�gurations. Anytime I

must write even a moderately complex build system based on make I dream

of having a simple, consistent and real programming language to describe the

con�guration instead of the language of a Makefile. Lacking it, when I use

make I end up relying on a zoo of external tools which leads to a hodgepodge.

At some point I came across scons and thought my wishes were answered.

It uses the lovely Python programming language so must be perfect. Unfor-

tunately as I tried to use it I found a few problems and personal dislikes. It

was di�cult to extend and I found the built-in functionality awkward. These

are admittedly very personal judgments.

More recently I came across waf and found it just about exactly what I

was looking for. It uses Python, it can be extended easily (it forms the basis

of my meta-build system worch). It has good, if not great documentation.

This latter issue is what this topic is meant to address. It is written to collect

my understanding as a user of waf and hopefully �ll a needed gap. It tries

to provide concrete examples of how to do various things and refer to the

o�cial documentation wherever possible.

1 Gestalt of waf

Waf is like make but with a Makefile called wscript and written in Python.

Waf is unlike in several ways:

� waf can be extended by providing Python modules loaded through

wscript �les

� waf can be bundled along with extensions to provide a single executable

that performs speci�c tasks

1

https://www.gnu.org/software/make/
http://www.scons.org/
https://code.google.com/p/waf/
https://github.com/brettviren/worch
http://docs.waf.googlecode.com/git/
http://docs.waf.googlecode.com/git/book_17/single.html#_writing_re_usable_waf_tools
http://docs.waf.googlecode.com/git/book_17/single.html#_obtaining_the_waf_file


� waf is cross-platform, no compilation needed and can be included as a

single �le along with the project it builds

� waf is parallel by default, it will run tasks as parallel as possible con-

strained by available CPU, dependencies or any limits imposed by the

user

2 The waf con�guration �le

Waf expects to �nd a �le called wscript in the current directory.

2.1 Commands

Functions in this �le become exposed through waf as command line com-

mands. For example:

def chirp(ctx):

print (ctx)

can be exercised as:

cd examples/commands/

waf chirp

2.2 Context object

A waf command function is given a context object. This context object may

be specialized depending on the function called. The �gure from the context

reference docs shows the inheritance:

Figure 1: Inheritance of context classes. Note, the arrows are reversed from

the sense they would be drawn in a UML inheritance diagram.

2

http://docs.waf.googlecode.com/git/apidocs_17/Context.html
http://docs.waf.googlecode.com/git/apidocs_17/Context.html


3 Prede�ned commands

Certain commands are reserved and treated special by waf.

3.1 Options

The options(ctx) function will be passed an options context object. This

function can be used to de�ne command line options that waf will recognize

on behalf of the project.

def options(opt):

opt.add_option('-x','--extra',action='store',

help='Add something extra from the command line')

def chirp(ctx):

print ('The little bit of extra is: "%s"' % ctx.options.extra)

cd examples/options/

waf --extra='Just a bit of extra stuff' chirp

3.2 Con�gure

The configure(cfg) function is passed a con�guration context object. This

function can be used to persist any information between other command

calls. On possible use is to make command line options persisted.

def options(opt):

opt.add_option('-x','--extra',action='store',

help='Add something extra from the command line')

def configure(cfg):

cfg.env.EXTRA_MSG = 'The little bit of extra is: "%s"' % cfg.options.extra

def build(bld):

print (bld.env.EXTRA_MSG)

cd examples/configure/

waf -x 'Persist This' configure

echo "Configure done"

waf

3

http://docs.waf.googlecode.com/git/apidocs_17/Options.html
http://docs.waf.googlecode.com/git/apidocs_17/Configure.html


3.3 Build

In the build(bld) function is where one describes to waf how to build ev-

erything. It is passed a build context object. There are several ways to do

this but a simple and powerful way is to declare a task generator by calling

bld as a callable object.

def configure(cfg):

return

def build(bld):

bld(rule="date > ${TGT}", target = "one.txt")

bld(rule="cp ${SRC} ${TGT} && date >> ${TGT}", source="one.txt", target="two.txt")

bld.install_files("${PREFIX}/examples", "one.txt two.txt")

cd examples/build

rm -rf build install

waf --prefix=install configure build install

ls -l build

ls -l install/examples

In this example two �les are created, one.txt out of thin air and two.txt

based on one.txt. Both of these �les are then installed into a location based

on the value of PREFIX which is set by the standard waf --prefix command

line option. A task is generated for each invocation of bld() as set by the

rule. Here the rule is a scriptlet which is essentially a shell script command

with some string interpolation. As can be seen, �le redirection and other

shell operators can be used.

4

http://docs.waf.googlecode.com/git/apidocs_17/Build.html
http://docs.waf.googlecode.com/git/book_16/single.html#_scriptlet_expressions

	Gestalt of waf
	The waf configuration file
	Commands
	Context object

	Predefined commands
	Options
	Configure
	Build


